Question	Answer	Marks	Guidance
Question 1 (a) (i)	Curly arrow from ${}^{-}$ CN to carbon atom of C-C l bond \checkmark Dipole shown on C-C l bond, C $^{\delta+}$ and C $l^{\delta-}$, AND curly arrow from C-C l bond to C l atom \checkmark $C_2H_5 \longrightarrow C_l \longrightarrow C$	Marks 3	Guidance ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of ${}^-$ CN OR CN ${}^-$ OR from minus sign on C of ${}^-$ CN ion (then lone pair on CN ${}^-$ does not need to be shown) IGNORE NaCl ALLOW SN1 mechanism: Dipole shown on C-Cl bond, $C^{\delta+}$ and $Cl^{\delta-}$, AND curly arrow from C-Cl bond to Cl atom \checkmark Correct carbocation AND curly arrow from ${}^-$ CN to carbocation. Curly arrow must come from lone pair on C of ${}^-$ CN OR CN ${}^-$ OR from minus sign on C of ${}^-$ CN ion (then lone pair on CN ${}^-$ does not need to be shown) \checkmark correct organic product AND Cl ${}^ \checkmark$ H C2H5 C2H5 C++Cl ${}^-$ C2H5 C-CN H C2H5 C-CN

Question	Answer	Marks	Guidance
(ii)	Compound G	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE name(s) ALLOW OH OH H C Br H H H H H H
	Reagents		
	Reaction 2: H₂ AND Ni ✓		ALLOW any suitable metal catalyst e.g. Pt ALLOW LiAlH ₄ for reagent in reaction 2 DO NOT ALLOW NaBH ₄ for reagent in reaction 2 IGNORE names (question asks for formulae) IGNORE references to temperature and/or pressure
	Reaction 3: Correct formula of an aqueous acid e.g. HCℓ(aq)/H₂SO₄(aq) ✓		ALLOW H ⁺ (aq) IGNORE dilute ALLOW formula of an acid AND water e.g. HC <i>l</i> AND H ₂ O H ₂ SO ₄ AND H ₂ O

Question	Answer	Marks	Guidance
Question (iii)	Answer Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton/H⁺ ✓ Structure of salt OH H H C C C NH ₃ H H AND CT ✓	Marks 2	IGNORE NH ₂ group donates electron pair ALLOW nitrogen donates an electron pair to H ⁺ DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the –OH group Compound H is a base is not sufficient (role of lone pair required) DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H ⁺ required) ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW OH H H———————————————————————————————
	H H AND CT ✓		OH H

Question	Answer	Marks	Guidance
Question (iv)	H O H O H O H O H O H O H O H O H O H O	Marks 3	Guidance ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW more than two repeat units for second marking point. 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n Broken down by water is not sufficient IGNORE references to photodegradable ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW
	HO OH		0
(ii)	$(n = \frac{21500}{226} =)$ 95 (repeat units)	1	MUST be a whole number.
	(iii 226) 55 (15pout arms)		DO NOT ALLOW an answer that uses an incorrect molar mass in the working.
			ALLOW 96
	Total	14	

Question	Answer	Marks	AO element	Guidance
2	Α	1	AO2.5	

Question Answer Marks AO element	Guidance
3 (a) (i) Similarities Orbital overlap (sideways) overlap of p orbitals ✓ The bond The bond/system/ring above and below (bonding (C) atoms/ring/plane) ✓ ANNOTATE CROSSES E ALLOW diagray P orbital P orbi	ram showing orbital overlap e.g. C C C C C C C C

Question	Answer	Marks	AO element	Guidance
	Difference Kekule has: alternating π bonds OR 3 π bonds / localised (π electrons) / overlap in one direction / 2 electrons in π bond AND Delocalised has: π ring (system) / all p orbitals overlap OR (π electrons) spread around ring / overlap in both directions / 6 electrons in π bond /			ALLOW diagram showing π bond in both Kekule AND delocalised models e.g AND Kekule Delocalised π bond labels not required for third mark
(ii)	 Any 2 pieces of evidence from (✓ ✓) Bond length (C-C) bond length is between single (C-C) and double bond (C=C) OR all (C-C) bond lengths are the same ΔH hydrogenation ΔH hydrogenation less (exothermic) than expected Resistance to reaction Benzene is less reactive than alkenes OR bromination of benzene requires a catalyst/halogen carrier OR benzene does not react with/decolourise bromine (at room temperature) OR benzene reacts by substitution OR benzene does not (readily) react by addition 	2	AO1.1 ×2	ALLOW (C–C) bond enthalpy is between single (C–C) and double bond (C=C) OR all (C–C) bond enthalpies are the same IGNORE enthalpy of hydration Benzene is unreactive is not sufficient (no comparison to alkene) For halogen carrier, ALLOW name or formula of suitable catalyst e.g. Fe, AlCl ₃ , FeBr ₃

Question	Answer	Marks	AO element	Guidance
(b) (i)	Polymer from D $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	AO2.5 AO2.5	For BOTH structures, ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown BUT ALLOW ECF IF end bonds omitted in both structures DO NOT ALLOW more than 2 repeat units BUT ALLOW ECF in subsequent structure IGNORE connectivity of C ₆ H ₅ CARE: ALLOW any consistent repeat unit: C ₆ H ₅ and H groups can alternate or be on opposite sides of chain e.g. H H H H H H H H H H H H H H H H H H H

Question	Answer	Marks	AO element	Guidance
(ii)	D Addition / polyalkene AND E: Condensation / polyamide ✓	1	AO1.1	DO NOT ALLOW 'additional'
(iii)	Formation of electrophile $ CH_3COCI + AICI_3 \rightarrow CH_3-C^*=O + AICI_4^- \checkmark $ Mechanism $ Curly \ arrow \ from \ \pi\text{-bond to } CH_3C^*=O \checkmark $ $ H_3C - \overset{+}{C} = O $	5	AO2.5	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW '+' charge anywhere on CH ₃ C ⁺ O i.e. CH ₃ CO ⁺ NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows 1st curly arrow must • go to the C of C=O AND • start from, OR close to circle of benzene ring ### - t=O ###

PhysicsAndMathsTutor.com

Question	Answer	Marks	AO element	Guidance
	Correct intermediate ✓ Curly arrow from C–H bond to reform π-ring ✓		AO3.1 AO2.5	
	H COCH ₃			T-ring should cover approximately 4 of the 6 sides of the benzene ring structure AND the correct orientation, <i>i.e.</i> gap towards C with COCH ₃ ALLOW + sign anywhere inside the 'hexagon' of intermediate
	Regeneration of catalyst $H^{+} + AlCl_{4}^{-} \longrightarrow AlCl_{3} + HCl \checkmark$		AO1.2	curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon'

Question	Answer	Marks	AO	Guidance
(iv)	One mark for each correct structure/reagent CH3 HO—C—CN Acid/H*/H3PO4/H2SO4 NABr/Br—AND H2SO4/H* ✓ CH3 Br—C—CN NH3 AND ethanol OR excess NH3 AND ethanol OR excess NH3	7	AO2.5 ×7	ALLOW any vertical bond to the OH OR NH ₂ groups e.g. ALLOW OR AND OR HO OR H ₂ N DO NOT ALLOW OH—, OR NH ₂ — but ALLOW ECF for subsequent use in this part For elimination, IGNORE 'concentrated', 'dilute' with acids BUT DO NOT ALLOW H ₂ O/steam/(aq) ALLOW HBr for NaBr/H ₂ SO ₄ For hydrolysis. IGNORE missing (aq) ALLOW HNO ₃ for hydrolysis but DO NOT ALLOW 'HNO ₃ and H ₂ SO ₄ ' ALLOW final 2 stages in opposite order i.e. NH ₃ before acid hydrolysis NH ₃ AND ethanol OR excess NH ₃ CH ₃ H'/H ₂ SO ₄ /HCI
	Total	23		

	Quest	ion	Answer	Marks	AO element	Guidance
4	(a)	(i)	Reagents K ₂ Cr ₂ O ₇ AND acid AND reflux ✓ Equation HO(CH ₂) ₄ OH + 4[O] → HOOC(CH ₂) ₂ COOH + 2H ₂ O	3	1.1	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ²⁻ ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ ,
			[O] AND H₂O ✓		2.5	
			Correctly balanced equation ✓		2.6	
		(ii)	hydrogen/H bond $C - (CH_2)_2 - C$ $O - \frac{\delta_+}{H} - \frac{\delta}{O} - H$ $O - \frac{\delta_+}{H} - \frac{\delta}{O} - \frac{H}{H}$	2	2.1×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
			\ H			DO NOT ALLOW δ + on H atoms of CH ₂ group
			OR $C - (CH_2)_2 - C$ HO O O O O O O O O O			ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e.
			hydrogen/H bond Hδ+			hydrogen/H bond H ^{δ+}
			O—H Diagram showing correct dipole charges on each end of one hydrogen bond between a water molecule and a diacid ✓ Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another AND Hydrogen bonding stated or labelled on diagram			HO O—H IF diagram is not labelled, ALLOW hydrogen bond/H bond from text

Question		Answer	Marks	AO element	Guidance
(b)	(i)	O O	2	1.2 2.5	ALLOW the 'O' or C=O at either end, e.g. O O O O O O O O O O O O O O O O O O
	(ii)	the ester/ ester bond/ ester group /polyester can be broken down ✓ OR It can be hydrolysed ✓	1	3.2	IGNORE references to photodegradable 'Bond breaks' is not sufficient – no reference to ester bond
	(iii)	SOCI ₂ in equation \checkmark Structure of diacyl dichloride \checkmark	3	1.1 1.2	ALLOW alternative approach using PCI ₅ or PCI ₃
		Complete balanced equation ✓		2.6	